วันอังคารที่ 3 กันยายน พ.ศ. 2556

คลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้า 
(Electromagnetic Radiation (EM radiation หรือ EMR)) 
เป็นคลื่นชนิดหนึ่งที่ไม่ต้องใช้ตัวกลางในการเคลื่อนที่ เช่น คลื่นวิทยุ (Radio waves) คลื่นไมโครเวฟ (Microwaves)
ปัจจุบันมีการใช้คลื่นแม่เหล็กไฟฟ้าในหลายๆด้านเช่น การติดต่อสื่อสาร (มือถือ โทรทัศน์ วิทยุ เรดาร์ ใยแก้วนำแสง) ทางการแพทย์ (รังสีเอกซ์) การทำอาหาร (คลื่นไมโครเวฟ) การควบคุมรีโมท (รังสีอินฟราเรด)
คุณสมบัติของคลื่นแม่เหล็กไฟฟ้าคือเป็นคลื่นที่เกิดจากคลื่นไฟฟ้าและคลื่นแม่เหล็กตั้งฉากกันและเคลื่อนที่ไปยังทิศทางเดียวกัน คลื่นแม่เหล็กไฟฟ้าสามารถเดินทางได้ด้วยความเร็ว 299,792,458 เมตร/วินาที หรือเทียบเท่ากับความเร็วแสง
คลื่นแม่เหล็กไฟฟ้า เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศได้
สเปกตรัม 
(Spectrum)
ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น ดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์
ในปัจจุบันอุปกรณ์หรือเครื่องใช้ที่เกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้าได้เข้ามามีบทบาทในชีวิตประจำตัว ไม่ว่าจะเป็นโทรศัพท์เคลื่อนที่ โทรทัศน์ วิทยุ เรดาร์ ฯลฯ ล้วนเป็นเทคโนโลยีทางการสื่อสารที่พัฒนามาจากความรู้เรื่องคลื่นแม่เหล็กไฟฟ้า คลื่นแม่เหล็กไฟฟ้าเกิดขึ้นได้อย่างไร และมีทฤษฎีที่เกี่ยวข้องเรื่องนี้อธิบายไว้อย่างไร

ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ์


               ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ์
                แมกซ์เวลล์ได้รวบรวมกฎต่างๆที่เกี่ยวกับแม่เหล็กไฟฟ้า มาสรุปเป็นทฤษฎีโดยนำเสนอในรูปของสมการคณิตศาสตร์ ซึ่งแมกซ์เวลล์ใช้ทำนายว่าสนามไฟฟ้าที่เปลี่ยนแปลงตามเวลา ทำให้เกิดสนามแม่เหล็ก และในขณะเดียวกันสนามแม่เหล็กที่เปลี่ยนแปลงตามเวลาก็ทำให้เกิดสนามไฟฟ้าด้วย โดยสนามไฟฟ้าและสนามแม่เหล็กต่างก็มีทิศตั้งฉากกัน แมกซ์เวลล์ยังทำนายอีกว่ามีคลื่นแม่เหล็กไฟฟ้าเกิดขึ้น จากการเหนี่ยวนำอย่างต่อเนื่องระหว่างสนามแม่เหล็กและสนามแม่เหล็ก ทำให้สนามไฟฟ้าและสนามแม่เหล็กเคลื่อนที่ออกจากแหล่งกำเนิดคลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ไปในสุญญากาศด้วยอัตราเร็วเท่ากับอัตราเร็วของแสง แมกซ์เวลล์จึงเสนอความคิดว่าแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่ช่วงหนึ่ง คำทำนายนี้ได้รับการยืนยันว่าเป็นจริงโดยการทดลองของเฮิรตซ์

รูป แมกซ์เวลล์

                James  Clerk Maxwell (พ.ศ. 2374 - 2422) นักฟิสิกส์และคณิตศาสตร์ชาวอังกฤษ ผลงานที่ทำให้เขามีชื่อเสียงมากที่สุดคือทฤษฎีคลื่นแม่เหล็กไฟฟ้าและนอกจากนี้ เขายังเป็นผู้นำวิทยาการด้านกลศาสตร์สถิติมาอธิบายการแจกแจงอัตราเร็วของโมเลกุลของแก๊ส ซึ่งมีความสำคัญในการพัฒนาทฤษฏีจลน์ของแก๊ส
เฮิรตซ์ได้ทดลองพิสูจน์ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์ โดยใช้ขดลวดสองขด พันรอบแกนเหล็กวงแหวน ดังรูป 18.2 ขดลวด A เป็นขดลวดปฐมภูมิ ขดลวด B เป็นขดลวดทุตยภูมิ ซึ่งมีจำนวนขดลวดมากกว่าขดลวด A มาก ปลายของดลวดทุติยภูมิทั้งสองข้างอยู่ห่างกันเป็นช่องว่างแคบ G เป็นสวิตช์แบบสั่นซึ่งการสั่นของสวิตช์จะทำหน้าที่ปิดเปิดวงจรไฟฟ้าของขดลวดปฐมภูมิ มีผลทำให้เกิดกระแสไฟฟ้าจากแบตเตอรี่ผ่านขดลวดปฐมภูมิ ตามจังหวะการปิดเปิดของสวิตช์
รูป 18.2 ขดลวดเหนี่ยวนำในการทดลองของเฮิรตซ์

                เมื่อสวิตช์แบบสั่นปิด-เปิดวงจรไฟฟ้า กระแสไฟฟ้าที่ผ่านขดลวดปฐมภูมิจะมีการเปลี่ยนแปลงเป็นจังหวะตามไปด้วย ซึ่งจะทำให้เกิดสนามแม่เหล็กที่มีการเปลี่ยนแปลงภายในแกนเหล็กของวงแหวน เนื่องจากขดลวด B มีจำนวนขดมาก ดังนั้นสนามแม่เหล็กที่เปลี่ยนแปลงนี้จะเหนี่ยวนำทำให้เกิดแรงเคลื่อนไฟฟ้าที่มีความต่างศักย์สูงมาก ความต่างศักย์ช่วงสั้นๆ จะปรากฏที่ปลายทั้งสองขดลวด B ซึ่งทำเป็นช่องว่างที่แคบไว้ สนามไฟฟ้าภายในช่องแคบจะมีค่ามากพอที่จะทำให้อากาศระหว่างช่องแคบแตกตัว จึงเป็นตัวนำไฟฟ้าให้กระแสไฟฟ้าผ่านช่องแคบได้ ฉะนั้นทุกครั้งที่สวิตช์ปิดหรือเปิดวงจร จะเห็นประกายไฟฟ้าเคลื่อนที่ผ่านช่องแคบนี้
                เมื่อเฮิรตซ์ใช้แผ่นโลหะแบนต่อเข้ากับปลายทั้งสองของขดลวดทุติยภูมิตรงช่องแคบ G และใช้เส้นลวดตัวนำงอเป็นรูปวงกลมโดยเหลือช่องแคบ ไว้ แล้วนำมาใกล้ช่องแคบ G พอสมควร ดังรูป 18.3 จะสังเกตเห็นประกายไฟฟ้าที่ช่องแคบ D ทุกครั้งที่เกิดประกายไฟฟ้าที่ช่องแคบ G
รูป 18.3 การรับคลื่นแม่เหล็กฟ้าของเฮิรตซ์ 
เฮิรตซ์อธิบายการเกิดประกายไฟฟ้าที่ช่องแคบ D ดังนี้ ขณะที่เกิดแรงเคลื่อนไฟฟ้าสูงช่วงสั้นๆ ในขดลวด ความต่างศักย์ซึ่งมีความถี่สูงมากจะเกิดระหว่างแผ่นราบทั้งสองที่ต่อไว้ ความถี่นี้สามารถควบคุมได้ด้วยขนาดของแผ่นราบและช่องว่าง G ในการทดลองทั่วไป ความถี่จะมีค่าประมาณ \displaystyle 10^8 เฮิรตซ์  ความต่างศักย์แปรเปลี่ยนที่เกิดขึ้นช่วงเวลาหนึ่งและมีความถี่สูง จะทำให้เกิดสนามไฟฟ้าและกระแสไฟฟ้าสลับเคลื่อนที่ผ่านช่อง G เป็นประกายไฟฟ้าดังที่กล่าวแล้ว
ประการไฟฟ้าที่เกิดขึ้นนั้น เกิดจากกระแสไฟฟ้ากระโดดข้ามช่องแคบกลับไปกลับมาหลายๆครั้ง เพราะสนามไฟฟ้าระหว่างช่อง Gที่เปลี่ยนแปลง เหนี่ยวนำให้เกิดสนามแม่เหล็กที่เปลี่ยนแปลง การเปลี่ยนแปลงสนามแม่เหล็กและสนามไฟฟ้านี้จึงทำให้เกิดคลื่นแม่เหล็กไฟฟ้าแผ่ออกจากแหล่งกำเนิด โดยความถี่ของคลื่นมีค่าเท่ากับความถี่ของกระแสไฟฟ้าที่กระโดดข้ามช่องแคบไปมา เมื่อคลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ผ่านลวดตัวนำวงกลมในรูป ซึ่งมีรัศมีและขนาดช่องแคบ D ที่เหมาะสม จะทำให้เกิดความต่างศักย์เปลี่ยนค่าที่มีความถี่สูงเท่ากับความถี่ของคลื่นที่ช่องแคบ D    นี้ จึงทำให้เกิดสนามไฟฟ้าความเข้มสูงมาก จนอากาศระหว่างช่องแคบแตกตัวเป็นไอออน ทำให้มีกระแสฟ้าผ่านช่องแคบนี้เป็นประกายไฟฟ้าดังที่เห็น
การทดลองแต่ละคำอธิบายดังกล่าวจึงสนับสนุนทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์ และนอกจากนี้เฮิรตซ์ยังได้ทำการทดลอง จนได้ผลสรุปว่า คลื่นแม่เหล็กไฟฟ้ามีความเร็วเท่ากับความเร็วของแสง

รูป เฮิรตซ์
                  Heinrich  Hertz (พ.ศ. 2400 - 2437) นักวิทยาศาสตร์ชาวเยอรมันเป็นผู้ค้นพบคลื่นแม่เหล็กไฟฟ้า ซึ่งนำไปสู่การประดิษฐ์วิทยุโทรทัศน์และเรดาร์ นอกจากนี้เขายังแสดงให้เห็นว่า แสงเป็นคลื่นแม่เหล็กไฟฟ้าด้วย

การแผ่คลื่นแม่เหล็กไฟฟ้าจากสายอากาศ

การแผ่คลื่นแม่เหล็กไฟฟ้าจากสายอากาศ  

       ทฤษฎีของแมกซ์เวลล์และการทดลองเฮิรตซ์ทำให้ทราบว่า ธรรมชาติมีคลื่นแม่เหล็กไฟฟ้าจริง และคลื่นแม่เหล็กไฟฟ้าเกิดจากการเคลื่อนที่ของประจุไฟฟ้าที่ถูกเร่ง เช่น อาจเกิดจากการเคลื่อนที่แบบฮาร์มอนิกอย่างง่ายของประจุไฟฟ้าในสายอากาศที่ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับแทนการปิดเปิดสวิตช์ไฟฟ้ากระแสตรงจากแบตเตอรี่  เมื่อต่อแหล่งกำเนิดไฟฟ้ากระแสสลับเข้ากับสายอากาศที่อยู่ในแนวดิ่ง ประจุไฟฟ้าในสายอากาศจะเคลื่อนที่กลับไปมาด้วยความเร่งในแนวดิ่ง เพราะประจุไฟฟ้าที่มีความเร่งจะแผ่รังสี จึงทำให้เกิดคลื่นแม่เหล็กไฟฟ้ากระจายออกมาจากสายอากาศทุกทิศทาง ยกเว้นทิศที่อยู่ในแนวเส้นตรงเดียวกับสายอากาศ การเกิดคลื่นแม่เหล็กไฟฟ้าในทิศตั้งฉากกับสายอากาศเป็นดังแผนภาพในรูป 1.1
รูป 1.1 
แสดงสายอากาศซึ่งเป็นท่อนโลหะสองท่อน ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับถ้าความต่างศักย์เปลี่ยนแปลงกับเวลาในรูปไซน์ จะทำให้ประจุไฟฟ้าในสายอากาศเคลื่อนที่กลับไปมาในท่อนโลหะทั้งสองและจะมีคลื่นแม่เหล็กไฟฟ้ากระจายออกมาโดยรอบ

 การแผ่คลื่นแม่เหล็กไฟฟ้าจากสายอากาศ
       ทฤษฎีของแมกซ์เวลล์และการทดลองเฮิรตซ์ทำให้ทราบว่า ธรรมชาติมีคลื่นแม่เหล็กไฟฟ้าจริง และคลื่นแม่เหล็กไฟฟ้าเกิดจากการเคลื่อนที่ของประจุไฟฟ้าที่ถูกเร่ง เช่น อาจเกิดจากการเคลื่อนที่แบบฮาร์มอนิกอย่างง่ายของประจุไฟฟ้าในสายอากาศที่ ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับแทนการปิดเปิดสวิตช์ไฟฟ้ากระแสตรงจากแบตเตอรี่ เมื่อต่อแหล่งกำเนิดไฟฟ้ากระแสสลับเข้ากับสายอากาศที่อยู่ในแนวดิ่ง ประจุไฟฟ้าในสายอากาศจะเคลื่อนที่กลับไปมาด้วยความเร่งในแนวดิ่ง เพราะประจุไฟฟ้าที่มีความเร่งจะแผ่รังสี จึงทำให้เกิดคลื่นแม่เหล็กไฟฟ้ากระจายออกมาจากสายอากาศทุกทิศทาง ยกเว้นทิศที่อยู่ในแนวเส้นตรงเดียวกับสายอากาศ การเกิดคลื่นแม่เหล็กไฟฟ้าในทิศตั้งฉากกับสายอากาศเป็นดังแผนภาพในรูป 1.1
       รูป 1.1 แสดงสายอากาศซึ่งเป็นท่อนโลหะสองท่อน ต่อกับแหล่งกำเนิดไฟฟ้ากระแสสลับถ้าความต่างศักย์เปลี่ยนแปลงกับเวลาในรูป ไซน์ จะทำให้ประจุไฟฟ้าในสายอากาศเคลื่อนที่กลับไปมาในท่อนโลหะทั้งสองและจะมี คลื่นแม่เหล็กไฟฟ้ากระจายออกมาโดยรอบ

รูป 1.1 แผนภาพการเกิดคลื่นแม่เหล็กไฟฟ้าเนื่องจากประจุไฟฟ้าเคลื่อนที่กลับไปมาในสายอากาศและสนามไฟฟ้า \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E}เคลื่อนที่จากสายอากาศด้วยความเร็วแสง(ไม่ได้แสดงสนาม \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} ไว้ในรูป)

     เมื่อเวลา t = 0 ท่อนโลหะล่างได้รับประจุไฟฟ้าบวกมากที่สุด ส่วนท่อนโลหะบนได้รับประจุไฟฟ้าลบมากที่สุด ทำให้เกิดสนามไฟฟ้า\displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} ซึ่งมีค่ามากที่สุดและมีทิศพุ่งขึ้นที่จุด P (สนามไฟฟ้าแทนด้วยเวกเตอร์\displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} และใช้สัญลักษณ์เป็นลูกศร) เมื่อเวลาผ่านไป สนามไฟฟ้าจะลดลงทำให้สนามไฟฟ้าที่เกิดใกล้สายอากาศก็มีค่าลดลงด้วย ในขณะเดียวกัน สนามไฟฟ้าที่มีค่ามากที่สุด ณ เวลา  t = 0 จะเคลื่อนที่จากสายอากาศด้วยความเร็ว\displaystyle  \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over c}    เท่ากับความเร็วแสงและเมื่อประจุไฟฟ้าเป็นกลาง ณ เวลา \displaystyle t = \frac{T}{4}(T แทนคาบซึ่งเป็นเวลาที่ประจุไฟฟ้าในท่อนโลหะทั้งสองเคลื่อนที่กลับไปมาครบ รอบ) ดังรูป 1.1 ข ขณะนี้สนามไฟฟ้าที่จุด P จะลดลงเป็นศูนย์
      เมื่อเวลาผ่านไป  \displaystyle t = \frac{T}{2}    ท่อนโลหะบนจะมีประจุไฟฟ้าบวกมากที่สุด และท่อนโลหะล่างจะมีประจุไฟฟ้าลบมากที่สุด สนามไฟฟ้าที่จุด P จึงมีค่ามากที่สุดและมีทิศพุ่งลง ดังรูป 1.1 ค  หลังจากนั้นประจุไฟฟ้าในท่อนโลหะจะลดน้อยลงๆ สนามไฟฟ้าที่เกิดขึ้นใกล้กับสายอากาศก็จะมีค่าน้อยลงๆ เช่นกัน ขณะที่สนามไฟฟ้าที่มีค่ามากที่สุด ณ เวลา \displaystyle t = \frac{T}{2}    จะเคลื่อนที่ออกจากสายอากาศด้วยอัตราเร็วเดียวกับแสง
       ต่อมาเมื่อถึงเวลา    \displaystyle t = \frac{3T}{4}    ประจุไฟฟ้าในท่อนโลหะทั้งสองเป็นกลางอีก ทำให้สนามไฟฟ้าใกล้กับสายอากาศเป็นศูนย์อีก ดังรูป 1.1 ง เมื่อเวลาของการเคลื่อนที่กลับไปมาของประจุไฟฟ้าครบรอบ คือ t = T จะได้สนามไฟฟ้า ดังรูป 1.1 0 สนามไฟฟ้าจะเกิดขึ้นตามกระบวนการซ้ำรอยเดิม เมื่อประจุไฟฟ้าเคลื่อนที่ครบรอบเสมอ
       สำหรับสนามแม่เหล็ก  \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} จะถูกเหนี่ยวนำให้เกิดขึ้นในทันทีที่มีสนามไฟฟ้า\displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E}   เกิดขึ้น สนามไฟฟ้าทั้งสองจะมีการเปลี่ยนแปลงด้วยเฟสตรงกัน ถ้าสนามไฟฟ้าเป็นศูนย์ สนามแม่เหล็กก็เป็นศูนย์ด้วย ทิศของสนามไฟฟ้าและสนามแม่เหล็กจะตั้งฉากซึ่งกันและกัน ขณะเดียวกันทิศของสนามแม่เหล็กทั้งสองก็ตั้งฉากกับทิศของความเร็วในการ เคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าด้วย คลื่นแม่เหล็กไฟฟ้าจึงเป็นคลื่นตามขวาง


รูป 1.2 คลื่นแม่เหล็กไฟฟ้าประกอบด้วย    \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} และ \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} ที่ตั้งฉากกัน

 
รูป 1.3 ผลคูณเชิงเวกเตอร์ของ \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} และ \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B}


                  รูป 1.2 แสดงสนามแม่เหล็ก \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} ที่เกิดจากการเหนี่ยวนำของสนามไฟฟ้า \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} ที่เปลี่ยนแปลง สนามไฟฟ้าและสนามแม่เหล็กจะเคลื่อนที่ไปตามแกน x ด้วยความเร็ว  \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over c}    เราอาจหาทิศของ \displaystyle <br />
\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over c}    โดยใช้ผลคูณเชิงเวกเตอร์ของ  \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E}  และ
\displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B}  โดยใช้กฎมือขวา ถ้ากำนิ้วทั้งสี่ของมือขวาในทิศจาก \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} ไป \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} ผ่านมุม 90 องศา นิ้วหัวแม่มือจะชี้ทิศของ \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over c}   ดังรูป 1.3
อาจสรุปสมบัติของคลื่นแม่เหล็กไฟฟ้า ได้ดังนี้
      1.  สนามไฟฟ้า \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E}    และสนามแม่เหล็ก\displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} มีทิศตั้งฉากซึ่งกันและกันและตั้งฉากกับทิศการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าเสมอ ดังนั้นคลื่นแม่เหล็กไฟฟ้าจึงเป็นคลื่นตามขวาง
      2. สนามไฟฟ้า    \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over E} และสนามแม่เหล็ก \displaystyle \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over B} เป็นฟังก์ชันรูปไซน์ และสนามทั้งสองจะเปลี่ยนแปลงตามเวลา ด้วยความถี่เดียวกันและเฟสตรงกัน
นักวิทยาศาสตร์ได้ทดลองศึกษาสมบัติของคลื่นแม่เหล็กไฟฟ้าและพบว่ามีสมบัติ เหมือนคลื่นทั่วไป ได้แก่ การสะท้อนการหักเห การแทรกสอด การเลี้ยวเบน และโพลาไรเซชัน

คลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆในสเปกตรัมมีสมบัติที่สำคัญเหมือนกันคือ เคลื่อนที่ไปด้วยความเร็วเท่ากับแสงและมีพลังงานส่งผ่านไปพร้อมกับคลื่น คลื่นแม่เหล็กไฟฟ้าที่เกิดขึ้นตามธรรมชาติและที่มนุษย์สร้างขึ้นมีชื่อเรียก ดังนี้ 


คลื่นวิทยุ

คลื่นวืทยุ
- ผลิตจากอุปกรณ์อิเลคโทรนิคส์โดยวงจรออสซิลเลเดอร์
- มีความถี่ในช่วง 104 - 109 เฮิร์ตซ์
- ใช้ในการสื่อสาร ส่งกระจายเสียงโดยใช้คลื่นฟ้าและคลื่นดิน
- สามารถเลี้ยวเบนผ่านสิ่งกีดขวางที่มีขนาดใกล้เคียงกับความยาวคลื่นได้
- โลหะมีสมบัติในการสะท้อนและดูดกลืนคลื่นแเหล็กไฟฟ้าได้ดี ดังนั้นคลื่นวิทยุจังผ่านไม่ได้
- การกระจายเสียงออกอากาศมีทั้งระบบ F.M. และ A.M.
  

    1.1    ระบบเอเอ็ม (A.M. = amplitude modulation) 
ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่นวิทยุเรียกว่า "คลื่นพาหะ" โดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง
ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับ ผิวโลกและคลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้องใช้สายอากาศตั้งสูงรับ 

สรุป      A.M. ( Amplitude Moduration)
•    เป็นการผสมสัญญานเสียงเข้ากับคลื่นพาหะโดยที่สัญญาณเสียงจะไปบังคับให้แอมปลิจูดของคลื่นพาหะเปลี่ยนแปลง
•    ความถี่ 530-1600 กิโลเฮิร์ตซ์
•    สะท้อนกับบรรยากาศชั้นไอโอโนสเฟียร์ได้ดี 


        1.2    ระบบเอฟเอ็ม (F.M. = frequency modulation)
ที่มารูปภาพ  http://www.myfirstbrain.com/thaidata/image.asp?ID=1757561

      ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่นพาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียงในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่ายทอดและเครื่องรับต้องตั้งเสา อากาศสูง ๆ รับ 
ที่มารูปภาพ  http://www.myfirstbrain.com/thaidata/image.asp?ID=1757615
สรุป  F.M. (Frequency Moduration) 
•    เป็นการผสมสัญญานเสียงเข้ากับคลื่นพาหะโดยที่สัญญานเสียงจะไปบังคับให้ความถี่ของคลื่นพาหะเปลี่ยนแปลง 
•    ความถี่ 88-108 เมกะเฮิร์ตซ์ 

คลื่นโทรทัศน์และไมโครเวฟ

 คลื่นโทรทัศน์และไมโครเวฟ
      คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆ เนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้ 

สรุป  ความถี่ 108 - 1012 เฮิรตซ์
•    ไม่สะท้อนกับบรรยากาศชั้นไอโอโนสเฟียร์จึงส่งเป็นเส้นตรงแล้วใช้สถานีถ่ายทอดเป็นระยะ 
หรือใช้คลื่นไมโครเวฟนำสัญญาณโทรทัศน์ไป  ยังดาวเทียม 
•    คลื่นโทรทัศน์มีความยาวคลื่นสั้นจึงเลี้ยวเบนผ่านสิ่งกีดขวางใหญ่ๆ เช่น รถยนต์ หรือเครื่องบินไม่ได้ 
ดังนั้นจะเกิดการสะท้อนกับเครื่องบิน กลับมาแทรกสอดกับคลื่นเดิม ทำให้เกิดคลื่นรบกวนได้ 
•    ไมโครเวฟสะท้อนโลหะได้ดี จึงใช้ทำเรดาห์ 

ที่มารูปภาพ  http://www.myfirstbrain.com/thaidata/image.asp?ID=1757618

รังสีอินฟาเรด

 รังสีอินฟาเรด (infrared rays)
        รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็นการควบคุมระยะไกลหรือรีโมทคอนโทรลกับเครื่องรับโทรทัศน์ได้ 

สรุป 
•     ความถี่ 1011 - 1018
•    ตรวจรับได้ด้วยประสาทสัมผัสทางผิวหนัง หรือ ฟิล์มถ่ายรูปชนิดพิเศษ
•    สิ่งมีชีวิตแผ่ออกมาตลอดเวลาเพราะเป็นคลื่นความร้อน
•    ใช้ในการสื่อสาร เช่น ถ่ายภาพพื้นโลกจากดาวเทียม, ใช้เป็นรีโมทคอนโทรลของเครื่องวิทยุและโทรทัศน์ และใช้ควบคุมจรวดนำวิถี
•    ใช้เป็นพาหะนำสัญญาณในเส้นใยนำแสง (optical fiber)

แสง

 แสง (light) 

             สี                ความยาวคลื่น (nm)
ม่วง                380-450
น้ำเงิน             450-500
 เขียว                500-570
 เหลือง              570-590
แสด                 590-610
แดง                  610-760

     แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประสาทตาของมนุษย์รับได้ สเปคตรัมของแสงสามารถแยกได้ดังนี้ 
สรุป
•    ความถี่ประมาณ 1014 เฮิรตซ์ ความยาวคลื่นประมาณ 10-7•    ตรวจรับโดยใช้จักษุสัมผัส
•    มักเกิดจากวัตถุที่มีอุณหภูมิสูง , และถ้าวัตถุยิ่งมีอุณหภูมิสูงจะยิ่งมีพลังงานแสงยิ่งมาก
•    อาจเกิดจากวัตถุที่มีอุณหภูมิไม่สูงก็ได้ เช่น แสงจากหลอดไฟฟลูออเรสเซนต์, หิ่งห้อย, เห็ดเรืองแสง
•    เลเซอร์ เป็นแหล่งกำเนิดแสงอาพันธ์ที่ให้แสงโดยไม่อาศัยความร้อน มีความถี่และเฟสคงที่
(ถ้าเป็นแสงที่เกิดจากความร้อนจะมีหลายความถี่และเฟสไม่คงที่) จนสามารถใช้เลเซอร์ในการสื่อสารได้,
ถ้าใช้เลนส์รวมแสงให้ความเข้มข้นสูงๆ จะใช้เลเซอร์ในการผ่าตัดได้
•    บริเวณที่แสงเลเซอร์ตก จะเกิดความร้อน

รังสีอัลตราไวโอเลต

รังสีอัลตราไวโอเลต (Ultraviolet rays) 

ที่มารูปภาพ http://ozone.tmd.go.th/uvbasic.files/image005.jpg

     รังสีอัลตราไวโอเลต หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์ รังสีอัลตราไวโอเลต สามารถทำให้เชื้อโรคบางชนิดตายได้ แต่มีอันตรายต่อผิวหนังและตาคน
สรุป
•    มีความถี่ประมาณ 1015- 1018 เฮิรตซ์
•    รังสีนี้ในธรรมชาติ ส่วนใหญ่มาจากดวงอาทิตย์
•    เป็นรังสีที่ทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์
•    เป็นอันตรายต่อเซลผิวหนัง, ตา และใช้ฆ่าเชื้อโรคได้
•    สามารถสร้างขึ้นได้โดยผ่านกระแสไฟฟ้าเข้าไปในหลอดที่บรรจุไอปรอท
•    ผ่านแก้วได้บ้างเล็กน้อยแต่ผ่านควอตซ์ได้ดี
•    การเชื่อมโลหะด้วยไฟฟ้าจะทำให้เกิดรังสีนี้ได้ 

รังสีเอกซ์

รังสีเอกซ์ (X-rays) 

       รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถทะลุสิ่งกีดขวางหนา ๆ ได้ หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทางการแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย ในวงการอุตสาหกรรมใช้ในการตรวจหารอยร้าวภายในชิ้นส่วนโลหะขนาดใหญ่ ใช้ตรวจหาอาวุธปืนหรือระเบิดในกระเป๋าเดินทาง และศึกษาการจัดเรียงตัวของอะตอมในผลึก

สรุป
•  ความถี่ประมาณ 1016 - 1022
•  ทะลุผ่านสิ่งกีดขวางหนาๆ ได้ แต่ถูกกั้นได้ด้วยอะตอมของธาตุหนัก จึงใช้ตรวจสอบรอยร้าวในชิ้นโลหะขนาดใหญ่,
ใช้ตรวจหาอาวุธปืนในกระเป๋าเดินทาง
•  ความยาวคลื่นประมาณ 10 -10 เมตร ซึ่งใกล้เคียงกับขนาดอะตอมและช่องว่างระหว่างอะตอมของผลึกจึงใช้วิเคราะห์โครงสร้างผลึกได้ 

รังสีแกมมา

 รังสีแกมมา (X -rays)

       รังสีแกมมามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจากปฏิกิริยานิวเคลียร์และสามารถกระตุ้น ปฏิกิริยานิวเคลียร์ได้ มีอำนาจทะลุทะลวงสูงไม่ต้องใช้ตัวกลางในการเคลื่อนที่

สรุป  

•    ใช้เรียกชื่อคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงกว่ารังสีเอกซ์
•    รังสีแกมม่าที่พบในธรรมชาติ เช่น รังสีแกมม่าที่เกิดจากการแผ่สลายของสารกัมมันตรังสี, รังสีคอสมิคที่มาจากอวกาศก็มีรังสีแกมม่าได้
•    รังสีแกมม่าอาจทำให้เกิดขึ้นได้ เช่นการแผ่รังสีของอนุภาคไฟฟ้าในเครื่องเร่งอนุภาค

โพลาไรเซชันของคลื่นแม่เหล็กไฟฟ้า

โพลาไรเซชันของคลื่นแม่เหล็กไฟฟ้า

    คลื่นแม่เหล็กไฟฟ้า ซึ่งมีเวกเตอร์สนามไฟฟ้า สั่นอยู่ในทิศทางเดียว ทิศของสนามไฟฟ้านี้เรียกว่าเป็นทิศ โพลาไรเซชันของคลื่น กรณีที่คลื่นมีสนามไฟฟ้าสั่นอยู่ในหลายทิศทางจะเป็นคลื่นแบบไม่โพลาไรซ์ 
การสั่นของเวกเตอร์สนามไฟฟ้า (a) หลายทิศทาง (b) ทิศทางเดียวหรือเชิงระนาบ

      เมื่อแสงไม่โพลาไรซ์ผ่านแผ่นโพลารอยด์ที่มีโมเลกุลของพอลิไวนิลแอลกอฮอล์ฝัง อยู่ในเนื้อพลาสติก สนามไฟฟ้าที่มีทิศตั้งฉากกับแนวการเรียงตัวของโมเลกุล จะผ่านแผ่นโพลารอยด์ออกไปได้ ส่วนสนามไฟฟ้าที่มีทิศขนานกับ แนวการเรียงตัวของโมเลกุล จะถูกโมเลกุลดูดกลืน ต่อไปจะเรียกแนวที่ตั้งฉากกับแนวการเรียงตัวของโมเลกุลนี้ว่า ทิศของโพลาไรซ์ ดังนั้นสรุปได้ว่า
      1. แสงที่สนามไฟฟ้ามีทิศขนานกับทิศของโพลาไรซ์ สามารถผ่านแผ่นโพลารอยด์ได้
      2. แสงที่สนามไฟฟ้ามีทิศตั้งฉากกับทิศของโพลาไรซ์ จะถูกแผ่นโพลารอยด์ดูดกลืน
สนามไฟฟ้าที่มีทิศขนานกับทิศของโพลาไรซ์ จะผ่านแผ่นโพลารอยด์ออกมา
ดังนั้นแสงที่ผ่านแผ่นโพลารอยด์ออกมาเป็นแสงโพลาไรซ์ในแนวดิ่ง
  

       เมื่อให้แสงไม่โพลาไรซ์ผ่านแผ่นโพลารอยด์สองแผ่นที่วางขนานกัน ขณะหมุนแผ่นโพลารอยด์แผ่นที่หนึ่งความสว่างของแสงที่ผ่านโพลารอยด์แผ่นที่ สองจะเปลี่ยนไป ความสว่างของแสงจะมากที่สุด เมื่อทิศของโพลาไรซ์ของแผ่นโพลารอยด์ทั้งสองอยู่ขนานกันและความสว่างน้อยที่ สุด เมื่อทิศของโพลาไรซ์ของแผ่นโพลารอยด์ทั้งสองตั้งฉากกัน (ถ้าแผ่นโพลารอยด์มีคุณภาพดีมาก จะไม่มีแสงผ่านออกมาเลย)แสงที่สะท้อนจากผิววัตถุโดยมีมุม ตกกระทบพอเหมาะเป็นแสงโพลาไรซ์ เพราะทิศของ สนามไฟฟ้าของแสงโพลาไรซ์มีทิศการเปลี่ยนแปลงกลับไปมาในแนวเดียว เมื่อหมุนแผ่นโพลารอยด์ในจังหวะที่ทิศของโพลาไรซ์ขนานกับทิศการ เปลี่ยนแปลง กลับไปมาของสนามไฟฟ้า แสงก็ผ่านออกมาทำให้เห็นสว่าง แต่ถ้าทิศทั้งสองตั้งฉากกัน แสงจะดูดกลืนทำให้มืด สำหรับแสงไม่โพลาไรซ์ที่ผ่านแผ่นโพลารอยด์ซึ่งหมุนครบรอบ ความสว่างไม่เปลี่ยนแปลงคลื่นแสงที่ไม่โพลาไรซ์ สามารถทำให้โพลาไรซ์ได้ด้วยกระบวนการ
     1.  การสะท้อน (Reflection)
     2.  การหักเหซ้อน (Double Refraction)
     3.  การกระเจิง (Scattering